24基础油对分散剂的感受性本研究中考察了不同基础油对同一种无灰分散剂的感受性。为此,选择了溶剂精制基础油、加氢处理基础油以及PAO合成基础油各一个,分别加入T61A无灰分散剂,进行了清净分散性考察,加剂量均为3%结果见23 2不同基础油对T161A的感受性考察(油泥)分析2的结果可知:加入等剂量的无灰分散剂T61A溶剂精制油HV150产生的油泥较多,加氢油HVH150次之,合成油产生的油泥较少,这与基础油本身的考察结果是一致的。但从T61八无灰分散剂的加入,对基础油本身产生的油泥改善程度来看,溶剂精制基础油HV150的效果较为明显,合成油较差,主要原因是由于基础油中的芳烃组分能促进对油泥的溶解所致。
3不同基础油对T161A的感受性考察(漆膜)分析3的结果可知:等剂量的无灰分散剂T61A分别加入3种不同工艺生产的基础油中,漆膜生成量均有显着改善,溶剂精制油HV150下降81%加氢油下降82%,合成油下降89%,比较而言,合成油更为显着,说明合成油对无灰分散剂T61A在清净性方面的感受性更好。
3结论基础油中的环烷烃、芳香烃和含硫、氮的杂原子化合物是油泥、漆膜的主要来源。
XPS分析表明:基础油经低温氧化硝化反应后,产生的油泥沉积物中的氧化物、硫化物和氮化物均以两种不同的化学形态存在,而在产生的漆膜沉积物中的氧化物与硫化物只有一种化学形态,说明漆膜是油泥进一步反应的产物。
基础油中的芳烃组分在促进油泥溶解方面是理想组分,加氢油和合成油在此方面的不足需要功能添加剂弥补。
表3基础油饱和烃组成%编号基础油链烷烃― -环环烷烃二环环烷烃三环环烷烃四环环烷烃五环环烷烃六环环烷烃总环烷烃饱和烃表4基础油芳烃组成编号基础油总单环芳烃总双环芳烃总三环芳烃总四环芳烃总五环芳烃总噻吩未鉴定芳烃总芳烃23基础油的低温沉积物生成倾向基础油的低温沉积物生成倾向考察结果见表表5基础油低温沉积物生成倾向编号基础油油泥/mg漆膜/mg沉积物总量/mg备注I类W类分析表5的试验结果,可以得到以下结论:基础油中的环烷烃和芳烃组分容易发生氧化硝化反应,从而加重沉积物的生成。基础油中较高的SN含量也能促进沉积物的生成,另外,基础油中的多环环烷烃,如五环环烷烃和六环环烷烃的存在也能加重沉积物的生成。基础油中的环烷烃比链烷烃更易发生氧化和硝化反应,从而加重油泥的生成。
为了研究沉积物产生的原因,我们对1号基础油新油、模拟试验产生的废油(正己烷提取物)、离心分离的油泥进行了R分析,谱图见、及同时,对模拟试验产生的油泥及漆膜进行了XPS分析,结果见是一个典型的基础油红外光谱图。2924的面内弯曲振动,722m-是一(CH)n―的面外摇m-、2854m-处的强吸收是一C3和一C2的伸摆振动。
从中各峰的吸收与新油()对比,不难别出现了羰基化合物、含氮化合物和含硫化合物的发现,废油在1713 1631cT1和1157cT1分吸收峰。这一结果表明:在整个模拟试验过程中,基础油MVI200从新油到废油经历了氧化、硝化和硫化等复杂的衰败过程。在的3238m-1处出现了羟基化合物的吸收峰,同时在谱图的3440m-1处有一吸收宽峰,这一明显特征表明,在油泥中含有缔合态的一田此外,与对比,中羰基化合物、含氮化合物和含硫化合物的吸收峰明显要强,这说明在基础油衰败后的大部分氧化产物、硝化产物和硫化产物都集中在油泥中。
郑州工业润滑油,郑州压缩机油,杨树林润滑油由河南杨树林润滑油有限公司()提供。